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ABSTRACT 

We discuss the implications of superrigidity and Ratner's theorem on invariant 
measures on homogeneous spaces for understanding the fundamental group of 
manifolds with an action of a semisimple Lie group. 

If  a non-compact simple Lie group acts on a manifold M, possibly preserving 

some geometric structure, it is natural to enquire as to the possible relationship be- 

tween the structure of  G and that of  ~r = ~r~ (M) .  Results in this direction appear 

in the work of  Gromov [1], the author [7], and Spatzier and the author [3]. 

A basic tool in some of  these results is the superrigidity theorem for cocycles [4], 

or, in more invariant terms, the superrigidity theorem for actions of  G on princi- 

pal bundles. In this paper we show how to obtain further results on this question 

by combining techniques of  superrigidity with Ratner's recent solution to the 

Raghunathan conjecture on invariant measures on homogeneous spaces. This ap- 

pears to be a new direction of  application of  Ratner's fundamental work. An in- 

teresting feature of  our results is that the results in [3],[7],[9] give "lower bounds" 

on the possible fundamental groups given the presence of  a G-action, while in this 

work we are able to give a type of  "upper bound".  

Let G be a connected simple Lie group with finite center and with R-rank(G) > 2. 

We assume G acts continuously on a compact manifold M preserving a probabil- 
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ity measure. Then G -  acts on M - .  We recall briefly the notions of engaging and 

topologically engaging from [7]. Namely, the action is called engaging if there is 

no loss of ergodicity in passing to finite covers of M, and topologically engaging 

if some element g E G -  both projects to an element not contained in a compact 

subgroup of G and acts tamely on M - ,  e.g., acts properly on a conull set. A fun- 

damental result of Gromov is that if the G action is real analytic and preserves a 

real analytic connection, then the action of G -  on the universal cover of M is 

proper on a conull set, and in particular is topologically engaging. All known ex- 

amples of smooth G actions preserving a volume are both engaging and topolog- 

ically engaging. The action of G -  on the principal bundle M -  --, M yields a 

measurable cocycle et. G -  x M ~ 7r, with the property that for each g E G - ,  

a ( g , .  )+1 is a bounded function on M. Therefore, for any representation o: 7r --, 

GL(n,C),  we clearly have a(ct(g, .  )±1) is bounded. This enables us to freely ap- 

ply the results of  [8], which yields information on the structure of such cocycles 

under these (in fact weaker) boundedness conditions. 

We now recall the statements of superrigidity and of Ratner's theorem in the 

form in which we shall need them. 

THEOREM 1. (Superrigidity [4],[8]) Let G and M be as above, and let H be a 

product o f finitely many (rational points of)  connected algebraic groups defined 

over (possibly varying) local fields o f  characteristic O. Let X : G -  x M-- ,  H be a 

cocycle with the property that h(g, .  )±1 is bounded for  each g. Assume the action 

o f  G on M is ergodic. 

(a) Assume the algebraic hull o f  the cocycle [4] is (algebraically) connected. 

Then there is a continuous homomorphism O : G -  --, H and a compact subgroup 

K C H commuting with 0 ( G - )  such that ~ is equivalent to a cocycle o f  the form 

~ (g ,m)  = O(g)c(g ,m)  where c (g ,m)  E K. 

(b) With no connectivity assumption on the algebraic hull, we can obtain the 

same conclusion by lifting )~ to a cocycle on a finite extension o f  M. 

THEOREM 2. (Ratner [2]) Let H be a connected Lie group, F C H a discrete sub- 

group, and G C H a connected simple non-compact subgroup. Let p be a finite 

G-invariant ergodic measure on H / F ,  where the action is given by the embedding 

o f  G in H. Then there is a closed connected subgroup L with G C L C H and a 

point  x E H / r  say with stabilizer in H being hFh -1 such that: 

(i) L tq hFh -1 is a lattice in L; and 

(ii) v is the measure on H / F  corresponding to the invariant volume on 

L / L  fq hFh-1 under the natural bijection L / L  f3 hFh-X -_ Lx  C H / F .  
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The next lemma is the observation that one can combine these results. 

LEMMA 3. Let G and H be as in Theorem 1, and write H = H~ x H I where 

H~ is the product  o f  the real and complex terms, and Hf  the product  o f  the 

totally disconnected terms. Let I' C H be a discrete subgroup, and assume that 

r fq H / =  [e}. Let M be an ergodic G-space with af ini te  invariant measure, and 

let ~ : G -  x M ~ F C H be a cocycle with the property that )~ (g, . ) + l is bounded 

for  each g. We also assume that this cocycle is not equivalent (as a cocycle into I') 

to a cocycle into a finite subgroup o fF .  Then, either with the assumption that the 

algebraic hull o f  )~ is Zariski connected, or alternatively, by passing to a finite 

ergodic extension o f  M,  we have: 

There is a non-trivial homomorphism 0 : G -  ~ H~ ( which automatically factors 

to a homomorphism o f  a finite cover o f  G), and a closed subgroup L, 0 ( G - ) C 

L C H=, and a compact subgroup C C L commuting with O(G-  ) such that: 

(i) F contains a subgroup isomorphic to a lattice F' C L;  in fact we can take I'" 

to be the intersection o f  L with a conjugate o f  p~  (F),  where po. is the projection 

o f  H onto Hoo. 

(ii) There is a measure preserving G--map M ~ C \ L / F ;  where the measure on 

the latter derives f rom the projection o f  the L-invariant volume form on L / I " ;  in 

particular O(rl (G)) acts trivially on C \ L / F ' ,  and hence we have a G-map M ~ 

C \ L / F ' .  

For the proof  we will need the following easy fact. 

LEMMA 4. Let o~ : M x G ~ F be a cocyclefor any ergodic group action taking 

values in a countable group r .  Suppose i: F ~ L is an embedding o f  r as a discrete 

subgroup o f  a locally compact group L. I f  i * t~ is equivalent to a cocycle into a 

compact subgroup K C L, the ~ is equivalent to a cocycle into a finite subgroup 

o f F .  

PROOF Or LEM~A 3. Choose O, [3, c, and K as in Theorem 1. By Lemma 4, 

0 is non-trivial. Thus,  there is a measurable map f f : M  ~ H such that 

~ ( g m ) a ( g , m ) ~ ( m )  -1 =c(m,g)O(g) .  Rewriting this as c(m,g)- l~b(gm)t~(g,m) = 

O(g)C/(m), we see that in K \ H / F  we have o:(gm) = O(g)o:(m) where o: is the com- 

position of  ff with the projection H ---, K \ H / r .  If  # is the G-invariant measure 

on M, let o:.(/~) be the projection of  this measure to K \ H / F .  Thus, we have a 

O(G-)-invariant,  ergodic, probability measure on K \ H / r .  Let ul be the lift o f  

this measure to H / r  by taking the image of  Haar  measure on each of  the fibers 

of  H / r  --, K \ H / I ' .  This measure is a 0 (G-)- invar iant  probability measure but it 
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is not a priori ergodic. However, the arguments of  [5] show that any ergodic com- 

ponent, say v, still projects onto ~.(/~). Fix such a v, which is now a O(G-)- 

invariant, ergodic, probability measure on (H,.  x 1-1I)/1'. 

Let T C Hf be a compact open subgroup. By enlarging K if necessary, we may 

assume T t o  be chosen such that T C  K. Let Fo, = I' t') (H** x T). Since Tis com- 

pact, the projection of  P~, to H** (which we recall is injective on F by assumption) 

is still discrete. We can identify (H~, x T)/F~. C (H.. x Hy ) / r  as an open G--  

invariant subset. Since T is open in HI ,  we can find a countable number of trans- 

lates of  (H® x T) /P , .  by elements of  Hf  whose union covers all of  (H~, x H / ) / F .  

Since H I commutes with 8 ( G - )  these translates are all open and G -  invariant, 

and it follows that v is supported on one of  these translates, say translation by 

h E Hy. We may thus translate v itself back via h -1 to (H** x T)/F®, and obtain 

a G--invariant ergodic measure on this set, and by projection, a G--invariant er- 

godic measure, say v2 on H~,/I'~,, where we have identified I'.. with its image 

under projection. Assertion (i) now follows immediately from Ratner's theo- 

rem. To see (ii), we simply observe that we may view oJ as a G- -map  M 

K \  (H x hT)/F**, and via projection we obtain an equivariant map M - - ,  

p(K)\H, . /F**,  where p is the projection. Since the image of  t~ under this map 

is clearly the same as the image of  v2, (ii) follows. 

As discussed in [7], for an action which is engaging or topologically engaging, 

the ~rl (M) valued cocycle, say or, defined by the lift of  the action to the universal 

cover of  M is not equivalent to a cocycle into a finite subgroup. 

COROLLARY 5. Let G be as in Theorem 1, and suppose G acts on a compact 

manifold M, preserving a finite measure. Suppose the action is either engaging, 

topologically engaging, or real analytic connection and volume preserving. I f  

~r ~ ( M) is isomorphic to a discrete subgroup of a Lie group, it contains a lattice in 

a Lie group L which contains a subgroup locally isomorphic to G. 

In particular, this applies if we take ~rl (M) to be a subgroup of  GL(n,O) for 

some n, where 0 is the ring of  algebraic integers. 

COROLLARY 6. Let G and M be as in Corollary 5. Suppose rl (M) is iso- 

morphic to a lattice F in G. Then the action is measurably isomorphic to an action 

induced from an action of a lattice commensurable with F. 

PROOF. Since I' is Zariski dense in G, we must clearly have L = G and C be- 

ing trivial in Lemma 3. 
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From Corollary 6, we also recover the main results of [9]. 

COROLLARY 7. Let G and M be as in Corollary 5. Suppose there is a faithful  

representation a'l (M) --* GL(n,Q-) for  some n. Then ~Cl (M)  contains a lattice in 

a Lie group L where L contains a group locally isomorphic to G. 

This follows from the fact that any finitely generated subgroup of GL(n,Q-)  

is isomorphic to a discrete subgroup in a product of algebraic groups as in Lemma 3. 

From Corollary 7 we can also recover a number of the results of [7] concerning 

faithful representations. 

One obtains a rather different type of result by combining Lemma 3 with some 

considerations of entropy. Namely, from Lemma 3 one can sometimes deduce that 

simply by knowing the fundamental group of M, any (engaging or topologically 

engaging) G-action on M must have entropy bounded below by specific algebraic 

data. This in turn can place dimension restrictions on M given the fundamental 

group. To describe this precisely, we introduce some notation. 

D~.rINITION 8. Let I' C L be a lattice in a connected Lie group L, and let G be 

another Lie group. If H C L is a closed connected subgroup and A C H is a lat- 

tice in H, we call the pair (H,A) G-related (or (G,0)-related if more precision is 

required) if there is some non-trivial homomorphism 0 : G-  --, L with 0 (G- )  C 

H C  L, and some conjugate r '  = ~,F~, -~ of F in L with H A  F' = A. We shall also 

call a subgroup rl C F G-related if there is a G-related (H,A) with r I = h - l A ~ , ,  

with h as above. 

We can rephrase Lemma 3 in this context as follows. We recall that a homomor- 

phism of groups is called an isogeny if it is surjective with finite kernel. 

COROLLARY 9. Let G and M be as in Corollary 5. Assume G acts ergodically 

on M. Suppose there is an isogeny lrl (M)  - ,  I', where I' is a lattice in a connected 

Lie group L. Then there is a f inite ergodic extension M" o f  M,  a G-related pair 

(H,A) in L, a compact subgroup C C H commuting with the image o f  O, and a 

measurable G-equivariant measure preserving map M '  --, C \ H / A .  

If G acts on a space X with invariant probability measure, we let h (g,X) denote 

the Komogorov-Sinai entropy of the transformation defined by g. Since entropy 

is unchanged by a finite ergodic extension, or more generally by an isometric ex- 

tension (i.e., via a homogeneous space of a compact group [5]), it follows that with 

the notation of Corollary 9 we have for each g E G, h ( g , M )  >_ h ( g , H / A ) .  We re- 

call that the entropy on H / A  can be computed from purely algebraic information. 
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Namely, if A is a matrix, we define its entropy h (A) to be ~ log([ 9~ 1), where h runs 

through the eigenvalues of A of magnitude at least 1. Then for any a E H, 

h (a, H / A )  = h (Ad/4 a). Further, given any G-invariant probability measure on 

M, its entropy can be computed by integrating the entropy over the ergodic com- 

ponents. Therefore, we have: 

COROLLARY 10. Let G and M be as in Corollary 5. Suppose there is an isogeny 

7rl (M)  ~ I', where I' is a lattice in a connected Lie group L. Then with respect to 

any G-invariant probability measure on M, we have for  any g E G -  that 

h ( g , M )  >_ min{h(AdH(O(g)))  I where H C L is ( G,O)-related}. 

Now consider the case in which M is a smooth compact manifold with a G-in- 

variant volume. The entropy of each g E G can the be computed via Pesin's for- 

mula, which in light of Theorem 1 yields a close relationship between dim(M) and 

possible values of the entropy. See [4] for a discussion. We can formulate this as 

follows. For each positive integer m, and g E G - ,  let 

Cm(g ) = max{h(r(g))I ~-:G- ~ GL(m,R) is a linear representation]. 

This of course is completely calculable in principle, and is certainly easily calcu- 

lated in low dimensions. Then by [4] we have for any smooth volume preserving 

action of G on Mwi th  dim(M) < m that h ( g , M )  <_ Cm(g). We therefore deduce: 

COROLLARY 1 1. Let G be as in Theorem 1. Let M be a compact smooth mani- 

fo ld  o f  dimension m, with a volume preserving action o f  G. Assume the action is 

either engaging or topologically engaging (e.g., C ° connection preserving). Sup- 

pose there is an isogeny 7rl (M)  --, I', where P is a lattice in a connected Lie group 

L. Then 

Cm(g ) > min{h(Adn(O(g)))  l where H C L is (G,O)-related}. 

This result can be viewed as giving an upper bound on certain features of P if 

there is an action of  G on a compact manifold of dimension at most m and with 

fundamental group I'. Corollary 11 is of little use in the extreme case in which there 

is a representation 0 such that O(G) intersects F in a lattice in O(G). (The conclu- 

sion in that case is still of interest, but it can be deduced in a much more elemen- 

tary manner, and in fact is true for any non-compact simple Lie group. See [6], 

e.g.) On the other hand, for a lattice I" with very few G-related groups, Corollary 

11 can be quite strong. An example at this extreme is given by the following result. 
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THEOREM 12. Let n be a prime. Then there is a cocompact lattice 1" C SL(n,R) 

such that any Lie group L intersecting r in a lattice in L must be solvable. 

This result follows immediately from: 

THEOREM 13. (Kottwitz) Let p be a prime and D be a central division algebra 

over Q of dimension p2. Let G be the algebraic Q-group isomorphic over R to 

SL(p,R)  and whose Q-points consist of  the elements of  reduced norm 1 in D × . 

Let H be a connected reductive Q-subgroup of G, with H :# G. Then H is a toms. 

To see that Theorem 12 follows from Theorem 13, we simply take I' = G(Z),  

where G is as in Theorem 13. Thus r is a cocompact lattice in G(R) = SL(p,R) .  

If  L C SL(p,R)  is connected and intersects F in a lattice, then M = the algebraic 

hull of  L I"1 F is a Q-group. Applying Theorem 13 to a Levi factor we deduce that 

the connected component of  M is solvable, and hence that L contains a solvable 

lattice. This implies that L itself is solvable. 

PROOF OF THEOREM 13. For ease of  notation we shall use H, G to denote the 

Q-points of these groups. The maximal Q-tori in D × are of  the form E × for fields 

E with Q c E c D and [ E : Q ]  = p .  Let g = GaI (Q- /Q) .  The Q-subtori o r E  × 

correspond bijectively to the g-invariant subspaces of the finite dimensional Q- 

vector space v = X*(E x ) ® z  Q. Note that V i s a  permutation representation of  

g with the g-set HOmQ_alg (E ,Q- )  as basis. Let J denote the image of g in the group 

of  permutations of  the p element set HomQ alg (E ,Q - ) .  Then p = [E:  Q] divides 

[J[, so J contains an element o of order p, which must act on HOm Q.alg (E ,Q-)  as 

a p-cycle. Any g invariant subspace of  V is invariant for the cyclic group C of  or- 

der p generated by o, and since V is isomorphic as a C-module to the group algebra 

Q [ C], it follows that the only C-invariant subspaces of V correspond to the four 

obvious g-invariant subspaces. Therefore, the only Q-subtori of E × are: [e l ,  Q×, 

E ×, and Te = k e r { N : E  x - '  Q×I, where in the latter N i s  the norm map. The 

maximal Q-tori in G are the tori Te; and hence their only Q-subtori are [e} and Te. 

Now consider a maximal Q-torus in the connected reductive Q-subgroup H. It 

is a subtorus of some Te, and hence is either [ e I or Te. If it is [ e l, then H is also 

trivial. If it is TE, then H has the same reductive rank as G, which, since H is an 

inner form of  SL(p) ,  implies that H = G O D '  for some semisimple Q-subalgebra 

of D containing E. But since dime D '  must divide dime D = p, the subalgebra D '  

must be either D or E. The former case does not arise since H ~ G, and the latter 

case gives H = Te. 
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In the context of Corollary 11, we consider the following example. Let n be 

prime and large, and let F be as in Theorem 12. Let G = SL(3,R). Let Ad be the 

adjoint representation of SL(n,R).  Then for any non-trivial homomorphism 

O • G --, SL(n,R),  we have a real analytic engaging ergodic action of G on the 

n 2 - I dimensional manifold SL(n ,R) / I ' .  Let M be a compact manifold of  di- 

mension m. Then by Corollary 11 and Theorem 12 we deduce 

Cm (g) - min{ h (Ad(0 (g))) ] O : G ---, SL(n,R) is a non-trivial representation I. 

For m small enough relative to n it is clear that this is impossible. (One can, in prin- 

ciple, compute both these numbers precisely.) One can of course do the same for 

any simple Lie group G of higher real rank. Thus: 

COROLLARY 14. Let G be a connected simple Lie group with finite center and 

R-rank(G) _> 2. Fix a positive integer m. Then there is a finitely generated group 

I' (which we may take to be the group I" in Theorem 12) with the properties: 

(i) There exists a compact real analytic manifold X with an isogeny "ff l ( X )  ~ r 

such that there is a real analytic, connection preserving, volume preserving, engag- 

ing, ergodic action o f  G on X.  

(ii) For any compact smooth manifold M with dim(M) <_ m and for which there 

is an isogeny 7rl (M)  ~ F, there is no smooth volume preserving action o f  G on M 

which is either engaging, or topologically engaging, or real analytic preserving a 

real analytic connection. 

Corollary 14 represents a new type of phenomenon. In [7],[3] conditions are 

given under which a group cannot appear as the fundamental group of such an M 

in any dimension. Here we see that some groups may appear as the fundamental 

group, but only in a sufficiently large dimension. 
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